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Abstract 
 

For a connected graph G = (V, E), an edge-to-vertex geodetic basis S in a 
connected graph G is called an extreme edge-to-vertex geodetic basis if S  
Se, where Se denotes the set of all extreme edges of G. A graph G is said to be 
an extreme edge-to-vertex geodesic graph if G contains at least one extreme 
edge-to-vertex geodetic basis. An edge-to-vertex geodetic basis S in a 
connected graph G is called a perfect extreme edge-to-vertex geodetic basis if 
S = Se. A graph G is said to be a perfect extreme edge-to-vertex geodesic 
graph if G contains a perfect extreme edge-to-vertex geodetic basis, that is, if 
G has an edge-to-vertex geodetic basis consisting of all the extreme edges of 
G. Extreme edge-to-vertex geodesic graph G of size q with edge-to-vertex 
geodetic number q or q – 1 or  q – 2 are characterized. It is shown that for 
each triple, d, k, q of integers with 2 ≤ k ≤ q – d + 2, d ≥ 4 ,and q – d – k + 1 > 
0, there exists a perfect extreme edge-to-vertex geodesic graph G of size q 
with diam G = d and gev(G) = k.  
 
Keywords: distance, geodesic, edge-to-vertex geodetic basis, edge-to-vertex 
geodetic number.  
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1.  Introduction 
By a graph G = (V, E), we mean a finite undirected connected graph without loops or 
multiple edges. The order and size of G are denoted by p and q respectively. We 
consider connected graphs with at least three vertices. For basic definitions and 
terminologies we refer to [1, 4]. A subset M  E(G) is called a matching of G if no 
pair of edges in M are incident. The maximum size of such M is called the matching 
number of G and is denoted by ∝ (G). An edge covering of G is a subset K  E(G) 
such that each vertex of G is end of some edge in K. The number of edges in a 
minimum edge covering of G, denoted by ß (G) is the edge covering number of G. 
For vertices u and v in a connected graph G, the distance d(u, v) is the length of a 
shortest u  v path in G. An u  v path of length d(u, v) is called an u  v geodesic. For 
a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest 
from v. The minimum eccentricity among the vertices is the radius, rad G and the 
maximum eccentricity is the diameter, diam G of G. A geodetic set of G is a set S of 
vertices such that every vertex of G is contained in a geodesic joining some pair of 
vertices of S. The geodetic number g(G) of G is the minimum cardinality of its 
geodetic sets and any geodetic set of cardinality g(G) is a minimum geodetic set or 
simply a g-set of G. The geodetic number of a graph was introduced in [1] and further 
studied in [2,5]. It was shown in [5] that determining the geodetic number of a graph 
is an NP-hard problem. N(v) = { u ∈ V(G) : uv ∈ E(G)} is called the neighborhood of 
the vertex v in G. A vertex v is an extreme vertex of a graph G if the subgraph induced 
by its neighbors is complete. The number of extreme vertices in G is its extreme order 
ex(G). A graph G is said to be an extreme geodesic graph if g(G) = ex(G), that is if G 
has a unique minimum geodetic set consisting of the extreme vertices of G. The 
concept of extreme geodesic graphs is introduced in [3]. For subsets A and B of V(G), 
the distance d(A, B) is defined as d(A, B) = min{d(x, y) : x  A, y  B}. An u  v path 
of length d(A, B) is called an A  B geodesic joining the sets A, B, where u  A and v 
 B. A vertex x is said to lie on an A  B geodesic if x is a vertex of an A  B 
geodesic. For A = {u, v} and B = {z, w} with uv and zw edges, we write an A  B 
geodesic as uv  zw geodesic and d(A, B) as d(uv, zw). A set S  E(G) is called an 
edge-to-vertex geodetic set if every vertex of G is either incident with an edge of S or 
lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic number 
gev(G) of G is the minimum cardinality of its edge-to-vertex geodetic sets and any 
edge-to-vertex geodetic set of cardinality gev(G) is an edge-to-vertex geodetic basis of 
G. The edge-to-vertex geodetic number of a graph was introduced in [9] and further 
studied in [6,8]. Since every edge covering of G is an edge-to-vertex geodetic set of 
G, we have gev(G) ≤  ß (G). For an edge e = uv ∈ E(G), N(e) = N(u) ∪ N(v). For a set 
S  E(G), N(S) = { N(e): e ∈ S}. An edge e of a graph G is called an extreme edge of 
G if one of its ends is an extreme vertex of G. Let Se denotes the set of all extreme 
edges of G, E(e) denotes the number of extreme edges of G, and c(G) denotes the 
length of the longest cycle in G. A double star is a tree with diameter three. A 
caterpillar is a tree or more, for which the removal of all end-vertices leaves a path. 
Example 1.1.  For the graph G given in Figure 1.1 with A = {v4,v5} and  
B = {v1, v2, v7}, the paths P : v5, v6, v7 and Q : v4, v3, v2 are the only two A  B 
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geodesics so that d(A, B) = 2. 
Example 1.2.   For the graph G given in Figure 1.2, the three v1v6  v3v4 geodesics  
are P : v1, v2, v3 ; Q : v1, v2, v4 ; and R : v6, v5, v4 with each of length 2 so that  
d(v1v6, v3v4) = 2. Since the vertices v2 and v5 lie on the v1v6  v3v4 geodesics P and R 
respectively, S = {v1v6, v3v4} is an edge-to-vertex geodetic basis of G so that  
gev(G) = 2. 

 

 
 
The following theorems are used in sequel. 
Theorem 1.1.[9]  If v is an extreme vertex of a connected graph G, then every edge-
to-vertex geodetic set contains at least one extreme edge is incident with v. 
Theorem 1.2.[9]   For any connected graph G, gev(G) = q if and only if G is a star. 
Theorem 1.3. [9]  For any connected graph G with size q ≥ 3, gev(G) = q – 1 if and 
only if G is either a double star or C3. 
Theorem 1.4.[9]  For a non-trivial tree T with k end-vertices, gev(T) = k. 
Theorem 1.5. [9] For any graph G of order p, gev(G) ≤ p - ∝ (G). 
 
 
2.  Extreme Edge-to- Vertex Geodesic Graphs 
Definition 2.1.   An edge-to-vertex geodetic basis S in a connected graph G is called 
an extreme edge-to-vertex geodetic basis if S  Se. A graph G is said to be an extreme 
edge-to-vertex geodesic graph if G contains at least one extreme edge-to-vertex 
geodetic basis. An edge-to-vertex geodetic basis S in a connected graph G is called a 
perfect extreme edge-to-vertex geodetic basis if S = Se. A graph G is said to be a 
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perfect extreme edge-to-vertex geodesic graph if G contains a perfect extreme edge-
to-vertex geodetic basis, that is, if G has an edge-to-vertex geodetic basis consisting 
of all the extreme edges of G. 
Example 2.2.  For the graph G given in Figure 2.1(a), Se = {v1v2, v1v6, v3v4, v4v5}. The 
set S1 = {v1v2, v4v5} is an edge-to-vertex geodetic basis of G. Since S1 ⊆ Se, S1 is an 
extreme edge-to-vertex geodetic basis of G. Therefore, G is an extreme edge-to-vertex 
geodesic graph. For the graph G given in Figure 2.1(b), Se = {v1v2, v1v7, v4v5} is the 
unique extreme edge-to-vertex geodetic basis of G so that gev(G) = 3 = E(e). 
Therefore G is a perfect extreme edge-to-vertex geodesic graph.  
Remark 2.3. For an extreme edge-to-vertex geodesic graph G, there can be more than 
one extreme edge-to-vertex geodetic basis.  For the graph G given in Figure 2.1(a), S2 
= {v1v6, v3v4} is an extreme edge-to-vertex geodetic basis. 

 
 For the complete graph G = Kp(p ≥ 3), every edge is an extreme edge. In [9], it 
is proved that, gev(Kp) is either p/2 or (p+1)/2. So Kp is an extreme edge-to-vertex 
geodesic graph. Since gev(Kp) ≠ E(e), Kp is not a perfect extreme edge-to-vertex 
geodesic graph. A nontrivial tree T has  k  extreme edges , namely its end edges and 
so E(e) = k. Since gev(G) = k, it follows that T is a perfect extreme edge-to-vertex 
geodesic graph. Obviously, a cycle Cp(p≥4) has no extreme edges, a cycle is not an 
extreme edge-to-vertex geodesic graph. For any complete bipartite graph G = Km,n(2≤ 
m ≤ n), it is easily to see that no edge is an extreme edge and so G is not an extreme 
edge-to-vertex geodesic graph. 
Theorem 2.4. Let G be an extreme edge-to-vertex geodesic graph of size q ≥ 2 such 
that d(e, f) = 0 or 1 for every e, f ∈  E(G). Then gev(G) = ß (G). 
Proof.  Let S be an edge-to-vertex geodetic basis of G and v ∈  V (G). We claim that v 
is incident with an edge of S. If not, then by Theorem 1.1, v is not an extreme vertex 
of G. If  v ∉ N(S), then v lies on a xu- yw geodesic, where xu, yw ∈ S. Then it follows 
that d(xu, yw) ≥ 2, which is a contradiction. Therefore v ∈ N(S). Since S is an edge-to-
vertex geodetic basis of G and since d(e, f) = 0 or 1 for every e, f ∈  E(G), the only 
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geodesics containing v are xvy and xyvw, where xv, vy, xy, vw∈ S. This contradicts the 
fact that v is not incident with an edge of S. Therefore v is incident with an edge of S. 
Which implies that S is an edge covering of G and so ß (G) ≤ gev(G). Hence gev(G) = 
ß (G).                                                                                                                          ∎ 
Remark 2.5.  The converse of the Theorem 2.4 is not true. For the extreme edge-to-
vertex geodesic graph G given in Figure 2.2, gev(G) = ß (G) = 6 and d(v1v2, v8v9) ≥2. 

 
Theorem 2.6.  Let G be a connected graph of size q ≥ 2. Then G is a perfect extreme 
edge-to-vertex geodesic graph with edge-to-vertex geodetic number q if and only if G 
= K1,q. 
Proof.  This follows from Theorem 1.2.                                                                               
Theorem 2.7.  Let G be a connected graph of size q ≥ 3. Then G is an extreme edge-
to -vertex geodesic graph with edge-to-vertex geodetic number q – 1 if and only if G 
is either C3 or a double star. 
Proof.  This follows from Theorem 1.3                                                                        ∎  
Theorem 2.8.  If G is an extreme edge-to-vertex geodesic graph of size q ≥ 4 and not 
a tree such that gev(G) = q – 2, then G is unicyclic and c(G) = 3. 
Proof.   Let G have more than one cycle. Then q ≥ p +1 and so p – 1≤ q – 2 = gev(G) ≤   
p – ∝ (G), by Theorem 1.5. Hence ∝ (G) = 1 and so G must be either a star or the 
cycle C3, a contradiction.  Therefore G is unicyclic. Then it follows from Theorem 
1.5, ∝ (G) ≤ 2. Let Ck be the unique cycle of G. We have k ≤ 5 since otherwise ∝ (G) 
≥ ∝ (Ck) ≥ 3. Therefore we have the following three cases: 
Case 1. k = 5. Then G cannot have any other vertices since otherwise ∝ (G) ≥ 3. 
Therefore G = C5 which is not an extreme edge-to-vertex geodesic graph, which is a 
contradiction. 
Case 2.  k = 4. If G = C4, then G is not an extreme edge-to-vertex geodesic graph. So 
let G≠ C4. Because ∝ (G) ≤ 2, only one of the vertices of C4 has degree more than 2. 
Therefore G is not an extreme edge-to-vertex geodesic graph, which is a 
contradiction. Therefore c(G) = 3                                                                                 ∎ 
Theorem 2.9.  Let G be a connected graph of size q ≥ 4. Then G is an extreme edge-
to-vertex geodesic graph with edge-to-vertex geodetic number q-2 if and only if G = 
K1, q – 1 + e or caterpillar with diameter 4 or the graph G given in Figure 2.3. 
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Proof.   For a caterpillar of diameter 4, the result follows from Theorem 1.4. For G = 
K1,q – 1 + e , it follows from Theorem 1.1, that the set of all end edges of G together 
with e forms an edge -to-vertex geodetic basis so that gev(G) = q – 2. Further it is 
easily verified that gev(G) = q – 2 for the graph given in Figure 2.3.  

Conversely let G be an extreme edge-to-vertex geodesic graph such that gev(G) 
= q – 2. Then by Theorem 2.8, G is either a tree or unicyclic. Let G be a tree. Then it 
follows from Theorem 1.4 that G has just two internal edges and hence G is a 
caterpillar. Thus in this case the graph reduces to a caterpillar of diameter 4. Now, let 
G be an unicyclic. By Theorem 2.8, c(G) = 3. Since gev(C3) = 2 = q – 1, we have G≠ 
C3. Let V(C3) = {v1, v2, v3}. We note that if u ∈ V(G) – V(C3), then deg u = 1. 
Otherwise, there are u1, u2 ∈  V(G) - V(C3) such that u1 is adjacent to both u2 and v1, 
say. Then it is easily seen that E(G) – {u1v1, v1v2, v1v3} is an edge-to-vertex geodetic 
set, which implies that gev(G) ≤ q – 3. Further at least one of vi`s should be of degree 
2. Otherwise E(G) – E(C3) is an edge-to-vertex geodetic set, which is impossible. 
Thus G should be either K1,q – 1 + e  or a graph like Figure 2.3.                                ∎ 
The following theorem is proved in [9 ]. 
Theorem  A. Let G be a connected graph of size q and diameter d, then gev(G) ≤ q – 
d + 2.  

If G is a perfect extreme edge-to-vertex geodesic graph, then we have the 
following result. 
Theorem 2.10.  If G is a perfect extreme edge-to-vertex geodesic graph of size q and 
diameter d, then E(e) ≤ q-d+2. 
Proof.  Since G is a perfect extreme edge-to-vertex geodesic graph, we have gev(G) = 
E(e), now the result follows from Theorem A.                   ∎ 
The following theorem characterize for trees. 
Theorem 2.11.   For any tree T, gev(T) = q – d + 2 = E(e) if and only if T is a 
caterpillar.  
Proof.   Let P : v0, v1, ..., vd-1, vd = v be a diametral path  of length d . Let ei = vi-1vi (1 
≤ i ≤ d) be the edges of the diametral path P. Let k be the number of end edges of T 
and l be the number of internal edges of T other than ei (2 ≤ i ≤ d – 1). Then d – 2 + l + 
k = q. By Theorem 1.4, gev(T) = k = E(e) and so gev(T) = q – d + 2 – l. Hence gev(T) = 
q – d + 2 = E(e) if and only if  l = 0, if and only if all internal vertices of T lie on the 
diametral path P, if and only if T is a caterpillar.                       ∎ 

In the following we give some realization results on perfect extreme edge-to-
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vertex geodesic graphs.   
Theorem 2.12.   For every pair k, q of integers with 2 ≤ k ≤ q, there exists a perfect 
extreme edge-to-vertex geodesic graph of size q with edge-to-vertex geodetic number 
q. 
Proof.   For k = q, the result follows from Theorem 2.6. Also, for each pair of integers 
with 2 ≤ k < q, there exists a tree of size q with k end edges. Hence the result follows 
from Theorem 1.4. 
Theorem 2.13.   For each triple, d, k, q of integers with 2 ≤ k ≤ q – d + 2 ,d ≥ 4, and q 
– d – k + 1 > 0, there exists a perfect extreme edge-to-vertex geodesic graph G of size 
q with diam G = d and gev(G) = k. 
Proof.   Let 2 ≤ k = q – d + 2. Let G be the graph obtained from the path P of length d 
by adding q – d new vertices to P and joining them to any cut-vertex of P. Then G is a 
tree of size q and diam G = d. By Theorem 1.4, gev(G) = q – d + 2 = k. Now, let  
2 ≤ k < q – d + 2. 
Case 1.   q – d – k + 1 is even. Let (q – d – k + 1) ≥ 2. Let n =  (௤ିௗି௞ାଵ)

ଶ
. Then  

n ≥ 1. Let Pd : u0, u1, …, ud  be a path of  length d. Add new vertices v1, v2, …, vk-2 and 
w1, w2, …, wn and join each vi (1 ≤ i ≤ k  2) with u1 and also join each wi (1 ≤ i ≤ n) 
with u1 and u3 in Pd. Now, join w1 with u2 and we obtain the graph G in Figure 2.4(a). 
Then G has size q and diameter d. By Theorem 1.1, all the end-edges u1vi (1 ≤ i ≤ k  
2), u0u1 and ud-1 ud lie in every edge-to-vertex geodetic set of G. Let S = {u1v1, u1v2, 
…, u1vk-2, u1u0, ud-1ud} be the set of all end-edges of G. Then it is clear that S is an 
extreme edge-to-vertex geodetic set of G and so gev(G) = k. Therefore G is a perfect 
extreme edge-to-vertex geodesic graph.    
Case 2.   q – d – k + 1 is odd. Let q – d – k + 1 ≥ 5. Let m = (ݍ − ݀ − ݇)/ 2. Then m ≥ 
2. Let Pd : u0, u1, …, ud be a path of length d. Add new vertices v1, v2, …, vk-2 and w1, 
w2, …, wm and join each vi (1 ≤ i ≤ k  2) with u1 and also join each wi (1 ≤ i ≤ m) with 
u1 and u3 in Pd. Now join w1 and w2 with u2 and we obtain the graph G in Figure 
2.4(b). Then G has size q and diameter d. Now, as in Case 1, S = {u1v1, u1v2, …, u1vk-2, 
u0u1, ud-1ud} is an extreme edge-to-vertex geodetic set of G so that gev(G) = k. 
Therefore G is a perfect extreme edge-to-vertex geodesic graph. 
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Let q – d – k + 1 = 1. Let Pd : u0, u1, …, ud be a path of length d. Add new 

vertices v1, v2, …, vk-2 and w1 and join each vi (1 ≤ i ≤ k  2) with u1 and also join w1 
with u1 and u3 in Pd, there by obtaining the graph G in Figure 2.4(c). Then the graph is 
of size q and diameter d. Now, as in Case 1, S = {u1v1, u1v2, …, u1vk-2, u0u1, ud-1ud} is 
an extreme edge-to-vertex geodetic set of G so that gev(G) = k. Therefore G is a 
perfect extreme edge-to-vertex geodesic graph. 
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Now, let q – d – k + 1 = 3. Let Pd  : u0, u1, …, ud be a path of length d. Add 

new vertices v1, v2, v3,…, vk-2 ,w1 and w2 and join each vi (1 ≤ i ≤ k  2) with u1 and 
also join w1 and w2 with u1 and u3 and obtain the graph G in Figure 2.4(d). Then G has 
size q and diameter d. Now, as in Case 1, S = {u1v1, u1v2, …, u1vk-2, u0u1, ud-1ud} is an 
extreme edge-to-vertex geodetic set of G so that gev(G) = k. Therefore G is a perfect 
extreme edge-to-vertex geodesic graph.                          ∎ 

 
For every connected graph, rad G ≤ diam G ≤ 2 rad G. Ostrand[7] showed that 

every two positive integers a and b with a ≤ b ≤ 2a are realizable as the radius and 
diameter, respectively, of some connected graph. Now, Ostrand’s theorem can be 
extended to extreme to edge-to-vertex geodesic graphs.  
Theorem 2.14. For positive integers r, d and l ≥ 3 with r<d≤ 2r, there exists a perfect 
extreme edge-to-vertex geodesic graph G with rad G = r, diam G = d and gev = l = 
E(e). 
Proof.   When r = 1, let G = K1, l . Then d = 2 and by Theorem 2.6, gev(G) = l and G is 
a perfect extreme edge-to-vertex geodesic graph.. Now, let r ≥ 2. Construct a graph G 
with the desired properties as follows. Let C2r : v1, v2, …, v2r, v1 be a cycle of order 2r 
and let Pd-r+1 : u0, u1, u2, …, ud-r be a path of order d  r + 1. Let H be the graph 
obtained from C2r and Pd-r+1 by identifying v1 in C2r and u0 in Pd-r+1. Now, add (l – 3) 
new vertices w1, w2,…, wl -3 to H and join each vertex wi (1 ≤ i ≤ l – 3) to the vertex 
ud-r-1 and join the vertices  vr and vr+2 and obtain the graph G of Figure 2.5. Then rad 
G = r and diam G = d. Let Se = {vrvr+1, vr+1vr+2, ud-r-1ud-r, ud-r-1w1, ud-r-1w2, …, ud-r-1wl-

3} be the set of l extreme edges of G. Let S1 = Se -{vrvr+1} and S2 = Se -{vr +1vr+2}. 
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Then by Theorem 1.1, either S1 or S2 is a subset of every extreme edge-to-vertex 
geodetic set of G. It is clear that neither  S1 nor S2 is an extreme edge-to-vertex 
geodetic set of G and so gev ≥ l. However, Se is an extreme edge-to-vertex geodetic set 
of G so that that gev = l. Therefore G is a perfect extreme edge-to-vertex geodesic 
graph.                         ∎ 
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