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Abstract

For a connected graph G = (V, E), an edge-to-vertex geodetic basis S in a
connected graph G is called an extreme edge-to-vertex geodetic basis if S ¢
Se, Where S, denotes the set of all extreme edges of G. A graph G is said to be
an extreme edge-to-vertex geodesic graph if G contains at least one extreme
edge-to-vertex geodetic basis. An edge-to-vertex geodetic basis S in a
connected graph G is called a perfect extreme edge-to-vertex geodetic basis if
S = S.. A graph G is said to be a perfect extreme edge-to-vertex geodesic
graph if G contains a perfect extreme edge-to-vertex geodetic basis, that is, if
G has an edge-to-vertex geodetic basis consisting of all the extreme edges of
G. Extreme edge-to-vertex geodesic graph G of size q with edge-to-vertex
geodetic number g or g — 1 or q — 2 are characterized. It is shown that for
each triple, d, k, g of integers with2 <k<gq-d+2,d>4,andq-d-k+1>
0, there exists a perfect extreme edge-to-vertex geodesic graph G of size q
with diam G = d and ge/(G) = k.
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1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by p and q respectively. We
consider connected graphs with at least three vertices. For basic definitions and
terminologies we refer to [1, 4]. A subset M < E(G) is called a matching of G if no
pair of edges in M are incident. The maximum size of such M is called the matching
number of G and is denoted by «’ (G). An edge covering of G is a subset K < E(G)
such that each vertex of G is end of some edge in K. The number of edges in a
minimum edge covering of G, denoted by R’ (G) is the edge covering number of G.
For vertices u and v in a connected graph G, the distance d(u, v) is the length of a
shortest u —v path in G. Anu —v path of length d(u, v) is called an u —v geodesic. For
a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest
from v. The minimum eccentricity among the vertices is the radius, rad G and the
maximum eccentricity is the diameter, diam G of G. A geodetic set of G is a set S of
vertices such that every vertex of G is contained in a geodesic joining some pair of
vertices of S. The geodetic number g(G) of G is the minimum cardinality of its
geodetic sets and any geodetic set of cardinality g(G) is a minimum geodetic set or
simply a g-set of G. The geodetic number of a graph was introduced in [1] and further
studied in [2,5]. It was shown in [5] that determining the geodetic number of a graph
is an NP-hard problem. N(v) = { u € V(G) : uv € E(G)} is called the neighborhood of
the vertex v in G. A vertex v is an extreme vertex of a graph G if the subgraph induced
by its neighbors is complete. The number of extreme vertices in G is its extreme order
ex(G). A graph G is said to be an extreme geodesic graph if g(G) = ex(G), that is if G
has a unique minimum geodetic set consisting of the extreme vertices of G. The
concept of extreme geodesic graphs is introduced in [3]. For subsets A and B of V(G),
the distance d(A, B) is defined as d(A, B) = min{d(x, y) : x € A,y € B}. Anu —v path
of length d(A, B) is called an A — B geodesic joining the sets A, B, where u € Aand v
€ B. A vertex x is said to lie on an A — B geodesic if x is a vertex of an A — B
geodesic. For A = {u, v} and B = {z, w} with uv and zw edges, we write an A — B
geodesic as uv — zw geodesic and d(A, B) as d(uv, zw). A set S < E(G) is called an
edge-to-vertex geodetic set if every vertex of G is either incident with an edge of S or
lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic number
gev(G) of G is the minimum cardinality of its edge-to-vertex geodetic sets and any
edge-to-vertex geodetic set of cardinality g.,(G) is an edge-to-vertex geodetic basis of
G. The edge-to-vertex geodetic number of a graph was introduced in [9] and further
studied in [6,8]. Since every edge covering of G is an edge-to-vertex geodetic set of
G, we have ge(G) < R7(G). For an edge e = uv € E(G), N(e) = N(u) U N(v). For a set
S c E(G), N(S) = { N(e): e € S}. An edge e of a graph G is called an extreme edge of
G if one of its ends is an extreme vertex of G. Let S denotes the set of all extreme
edges of G, E(e) denotes the number of extreme edges of G, and ¢c(G) denotes the
length of the longest cycle in G. A double star is a tree with diameter three. A
caterpillar is a tree or more, for which the removal of all end-vertices leaves a path.
Example 1.1. For the graph G given in Figure 1.1 with A = {v,vs} and
B = {vi, Vo, v7}, the paths P : vs, v, v7 and Q : vy, V3, V2 are the only two A — B
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geodesics so that d(A, B) = 2.

Example 1.2. For the graph G given in Figure 1.2, the three vivg — V3v4 geodesics
are P : vy, Vo, v3; Q vy, Vo, Vg ; and R : v, Vs, V4 With each of length 2 so that
d(v1ve, V3vg) = 2. Since the vertices v, and vs lie on the vivs — vav,4 geodesics P and R
respectively, S = {vive, Vava} is an edge-to-vertex geodetic basis of G so that
gev(G) = 2.

Vi
V7 V)
Ve V3
Vs Vg
G
Figure 1.1
Vi V2 V3
Vs Vs Vg
G
Figure 1.2

The following theorems are used in sequel.

Theorem 1.1.[9] If v is an extreme vertex of a connected graph G, then every edge-
to-vertex geodetic set contains at least one extreme edge is incident with v.

Theorem 1.2.[9] For any connected graph G, ge(G) = g if and only if G is a star.
Theorem 1.3. [9] For any connected graph G with size q > 3, ge(G) = q - 1 if and
only if G is either a double star or Cs.

Theorem 1.4.[9] For a non-trivial tree T with k end-vertices, gey(T) = k.

Theorem 1.5. [9] For any graph G of order p, gel(G) <p - <’ (G).

2. Extreme Edge-to- Vertex Geodesic Graphs

Definition 2.1. An edge-to-vertex geodetic basis S in a connected graph G is called
an extreme edge-to-vertex geodetic basis if S ¢ Se. A graph G is said to be an extreme
edge-to-vertex geodesic graph if G contains at least one extreme edge-to-vertex
geodetic basis. An edge-to-vertex geodetic basis S in a connected graph G is called a
perfect extreme edge-to-vertex geodetic basis if S = Se. A graph G is said to be a
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perfect extreme edge-to-vertex geodesic graph if G contains a perfect extreme edge-
to-vertex geodetic basis, that is, if G has an edge-to-vertex geodetic basis consisting
of all the extreme edges of G.

Example 2.2. For the graph G given in Figure 2.1(a), Se = {Va1V2, V1V, VaVa, V4Vs}. The
set S; = {vivo, V4Vs} is an edge-to-vertex geodetic basis of G. Since S; € S, S; is an
extreme edge-to-vertex geodetic basis of G. Therefore, G is an extreme edge-to-vertex
geodesic graph. For the graph G given in Figure 2.1(b), Se¢ = {viV2, V1V7, VaVs} is the
unique extreme edge-to-vertex geodetic basis of G so that g./(G) = 3 = E(e).
Therefore G is a perfect extreme edge-to-vertex geodesic graph.

Remark 2.3. For an extreme edge-to-vertex geodesic graph G, there can be more than
one extreme edge-to-vertex geodetic basis. For the graph G given in Figure 2.1(a), S;
= {Vv1Ve, V3V4} IS an extreme edge-to-vertex geodetic basis.

v
1 v v,
Vg Vo T
V.
[ S— Vi
Vs V3 L
V3 V2
(b)
Vg G
@) Figure 2.1

For the complete graph G = Ky(p > 3), every edge is an extreme edge. In [9], it
is proved that, gey(Kp) is either p/2 or (p+1)/2. So K, is an extreme edge-to-vertex
geodesic graph. Since ge/(Kp) # E(e), Kp is not a perfect extreme edge-to-vertex
geodesic graph. A nontrivial tree T has k extreme edges , namely its end edges and
so E(e) = k. Since ge(G) = k, it follows that T is a perfect extreme edge-to-vertex
geodesic graph. Obviously, a cycle Cp(p>4) has no extreme edges, a cycle is not an
extreme edge-to-vertex geodesic graph. For any complete bipartite graph G = Ky, 1(2<
m < n), it is easily to see that no edge is an extreme edge and so G is not an extreme
edge-to-vertex geodesic graph.

Theorem 2.4. Let G be an extreme edge-to-vertex geodesic graph of size q > 2 such
that d(e, f) =0 or 1 for every e, f € E(G). Then gey(G) = RB"(G).

Proof. Let S be an edge-to-vertex geodetic basis of G and v € V (G). We claim that v
is incident with an edge of S. If not, then by Theorem 1.1, v is not an extreme vertex
of G. If v & N(S), then v lies on a xu- yw geodesic, where xu, yw € S. Then it follows
that d(xu, yw) > 2, which is a contradiction. Therefore v € N(S). Since S is an edge-to-
vertex geodetic basis of G and since d(e, f) = 0 or 1 for every e, f € E(G), the only
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geodesics containing v are xvy and xyvw, where xv, vy, xy, vwe S. This contradicts the
fact that v is not incident with an edge of S. Therefore v is incident with an edge of S.
Which implies that S is an edge covering of G and so B’ (G) < gey(G). Hence ge(G) =
RB’(G). ]
Remark 2.5. The converse of the Theorem 2.4 is not true. For the extreme edge-to-
vertex geodesic graph G given in Figure 2.2, gey(G) = R7(G) = 6 and d(v1Vz, VgVg) >2.

V3 Vg Vg
Va V4 Vg
Vi Vs V7
G
Figure 2.2

Theorem 2.6. Let G be a connected graph of size q > 2. Then G is a perfect extreme
edge-to-vertex geodesic graph with edge-to-vertex geodetic number q if and only if G
= Klq

Proof. This follows from Theorem 1.2.

Theorem 2.7. Let G be a connected graph of size g > 3. Then G is an extreme edge-
to -vertex geodesic graph with edge-to-vertex geodetic number q — 1 if and only if G
is either C3 or a double star.

Proof. This follows from Theorem 1.3 [
Theorem 2.8. If G is an extreme edge-to-vertex geodesic graph of size g > 4 and not
a tree such that ge,(G) = g — 2, then G is unicyclic and ¢(G) = 3.

Proof. Let G have more than one cycle. Theng>p +1andsop—-1<q-2 =ge(G) <
p — <’ (G), by Theorem 1.5. Hence o’ (G) = 1 and so G must be either a star or the
cycle Cs, a contradiction. Therefore G is unicyclic. Then it follows from Theorem
1.5, «’(G) < 2. Let Cy be the unique cycle of G. We have k < 5 since otherwise <’ (G)
> oc”(Cy) > 3. Therefore we have the following three cases:

Case 1. k = 5. Then G cannot have any other vertices since otherwise «<’ (G) > 3.
Therefore G = Cs which is not an extreme edge-to-vertex geodesic graph, which is a
contradiction.

Case 2. k=4.If G = C4, then G is not an extreme edge-to-vertex geodesic graph. So
let G# C,4. Because o’ (G) < 2, only one of the vertices of C4 has degree more than 2.
Therefore G is not an extreme edge-to-vertex geodesic graph, which is a
contradiction. Therefore ¢(G) =3 [ |

Theorem 2.9. Let G be a connected graph of size g > 4. Then G is an extreme edge-
to-vertex geodesic graph with edge-to-vertex geodetic number g-2 if and only if G =
K1 q -1 + e or caterpillar with diameter 4 or the graph G given in Figure 2.3.
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G

Figure 2.3

Proof. For a caterpillar of diameter 4, the result follows from Theorem 1.4. For G =
Kig-1+e, it follows from Theorem 1.1, that the set of all end edges of G together
with e forms an edge -to-vertex geodetic basis so that ge,(G) = q — 2. Further it is
easily verified that ge,(G) = g — 2 for the graph given in Figure 2.3.

Conversely let G be an extreme edge-to-vertex geodesic graph such that ge,(G)
= (- 2. Then by Theorem 2.8, G is either a tree or unicyclic. Let G be a tree. Then it
follows from Theorem 1.4 that G has just two internal edges and hence G is a
caterpillar. Thus in this case the graph reduces to a caterpillar of diameter 4. Now, let
G be an unicyclic. By Theorem 2.8, ¢(G) = 3. Since gey(C3) =2 = q — 1, we have G#
Cs. Let V(C3) = {vi1, V2, v3}. We note that if u € V(G) — V(Cs), then deg u = 1.
Otherwise, there are u;, u; € V(G) - V(Cs) such that u; is adjacent to both u, and vy,
say. Then it is easily seen that E(G) — {uivi, vaVva, V1va} is an edge-to-vertex geodetic
set, which implies that gey(G) < q — 3. Further at least one of v;'s should be of degree
2. Otherwise E(G) — E(C3) is an edge-to-vertex geodetic set, which is impossible.
Thus G should be either Kyq—1 + e or a graph like Figure 2.3. ]
The following theorem is proved in [9 ].

Theorem A. Let G be a connected graph of size q and diameter d, then ge,(G) <q -
d+2.

If G is a perfect extreme edge-to-vertex geodesic graph, then we have the
following result.

Theorem 2.10. If G is a perfect extreme edge-to-vertex geodesic graph of size q and
diameter d, then E(e) < g-d+2.

Proof. Since G is a perfect extreme edge-to-vertex geodesic graph, we have ge,(G) =
E(e), now the result follows from Theorem A. [ ]
The following theorem characterize for trees.

Theorem 2.11. For any tree T, ge(T) = q—-d + 2 = E(e) if and only if T is a
caterpillar.

Proof. LetP :vp, vy, ..., V41, Vg = Vv be a diametral path of length d . Let g = vij1vi (1
< i <d) be the edges of the diametral path P. Let k be the number of end edges of T
and | be the number of internal edges of T other thane;(2<i<d-1). Thend -2+ +
k =q. By Theorem 1.4, ge(T) =k = E(e) and so gel(T) =q —d + 2 — I. Hence gey(T) =
q-d+2=E(e)ifand only if |1 =0, if and only if all internal vertices of T lie on the
diametral path P, if and only if T is a caterpillar. [ ]

In the following we give some realization results on perfect extreme edge-to-



Extreme Edge-to-vertex Geodesic Graphs 285

vertex geodesic graphs.

Theorem 2.12. For every pair k, q of integers with 2 < k < q, there exists a perfect
extreme edge-to-vertex geodesic graph of size q with edge-to-vertex geodetic number
g.
Proof. Fork = q, the result follows from Theorem 2.6. Also, for each pair of integers
with 2 <k < q, there exists a tree of size g with k end edges. Hence the result follows
from Theorem 1.4.

Theorem 2.13. For each triple, d, k, q of integers with2 <k <q-d+2,d>4, and q
—d—-k+1>0, there exists a perfect extreme edge-to-vertex geodesic graph G of size
q with diam G =d and ge/(G) = k.

Proof. Let2<k=q-d+ 2. LetG be the graph obtained from the path P of length d
by adding g — d new vertices to P and joining them to any cut-vertex of P. Then G is a
tree of size q and diam G = d. By Theorem 1.4, ge(G) = q —d + 2 = k. Now, let
2<k<g-d+2

Casel. g-d-k+1liseven Let(g-d-k+1)>2. Letn= M.Then

n>1.Let Py: ug Uy, ..., Ug be apath of length d. Add new vertices v, Vo, ..., V-2 and
Wi, Wa, ..., Wp and join each vi (1 <i <k — 2) with u; and also join each w; (1 <i<n)
with u; and usz in Pg. Now, join w; with u, and we obtain the graph G in Figure 2.4(a).
Then G has size g and diameter d. By Theorem 1.1, all the end-edges u;vi (1 <i <k —
2), Ugup and ug.1 Ug lie in every edge-to-vertex geodetic set of G. Let S = {uivi, Uyvy,
..., U1Vk2, Ujlp, Ug1Uq} be the set of all end-edges of G. Then it is clear that S is an
extreme edge-to-vertex geodetic set of G and so ge/(G) = k. Therefore G is a perfect
extreme edge-to-vertex geodesic graph.

Case2. q—-d-k+1lisodd. Letq-d-k+1>5 Letm=(q—d —k)/2. Thenm>
2. Let Py: ug, Uy, ..., ug be a path of length d. Add new vertices vi, Vs, ..., Vk2 and wy,
Wy, ..., Wn and join each v; (1 <i <k — 2) with u; and also join each w; (1 <i < m) with
u; and uz in Pg. Now join wj and w, with u, and we obtain the graph G in Figure
2.4(b). Then G has size g and diameter d. Now, as in Case 1, S = {ujvi, U1V, ..., UiV,
UoU1, Ug-1Ug} IS an extreme edge-to-vertex geodetic set of G so that ge(G) = k.
Therefore G is a perfect extreme edge-to-vertex geodesic graph.
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Ug-1  Ug

Wn
G

Figure 2.4(a)

Ug-1  Ug

W

G
Figure 2.4(b)

Letg-d-k+1=1 LetPy: ug Uy, ..., Ug be a path of length d. Add new
vertices v, Va, ..., Vk2and wy and join each vi (1 <i <k — 2) with u; and also join w;
with u; and us in Py, there by obtaining the graph G in Figure 2.4(c). Then the graph is
of size g and diameter d. Now, as in Case 1, S = {u1V1, U1Vy, ..., UsVk2 UoUg, Ug-1Ug} iS
an extreme edge-to-vertex geodetic set of G so that ge(G) = k. Therefore G is a
perfect extreme edge-to-vertex geodesic graph.
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Vo

Ug-1 Ug

Figure 2.4(c)

Now, letg—-d -k + 1 =3. Let Py : U, Uy, ..., Ug be a path of length d. Add
new vertices vi, Vo, Vs,..., Vk2 Wi and w; and join each v; (1 <i <k — 2) with u; and
also join w; and w, with u; and uz and obtain the graph G in Figure 2.4(d). Then G has
size g and diameter d. Now, as in Case 1, S = {ujvi, U1Va, ..., U1Vk2, UoUg, Ug-1Ug} IS @n
extreme edge-to-vertex geodetic set of G so that ge,(G) = k. Therefore G is a perfect
extreme edge-to-vertex geodesic graph. [ ]

Ug-1 Ug

Wa

G
Figure 2.4(d)

For every connected graph, rad G < diam G <2 rad G. Ostrand[7] showed that
every two positive integers a and b with a < b < 2a are realizable as the radius and
diameter, respectively, of some connected graph. Now, Ostrand’s theorem can be
extended to extreme to edge-to-vertex geodesic graphs.

Theorem 2.14. For positive integers r, d and | > 3 with r<d< 2r, there exists a perfect
extreme edge-to-vertex geodesic graph G with rad G =r,diam G =d and gey = | =
E(e).

Proof. Whenr=1, let G =Ky, . Then d =2 and by Theorem 2.6, ge,(G) =l and G is
a perfect extreme edge-to-vertex geodesic graph.. Now, let r > 2. Construct a graph G
with the desired properties as follows. Let Cy: vy, Vo, ..., Vo, V1 be a cycle of order 2r
and let Pg.r+1 : Ug, U1, Uy, ..., Ugr be a path of order d — r + 1. Let H be the graph
obtained from C,, and Pg.r+1 by identifying vy in Cyr and ug in Pgy.+1. Now, add (I - 3)
new vertices Wi, Wo,..., W .3 to H and join each vertex w; (1 <i <1 - 3) to the vertex
Ug-r-1 and join the vertices vrand v+, and obtain the graph G of Figure 2.5. Then rad
G =rand diam G =d. Let S¢ = {V{Vr+1, Vr+1Vr+2, Ug-r-1Ud-r, Ug-r-1W1, Ug-r-1W2, ..., Ug-r-1Wi-
3} be the set of | extreme edges of G. Let S; = Se -{ViVr+1} and Sy = Se¢ -{Vr +1Vr+2}-
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Then by Theorem 1.1, either S; or S, is a subset of every extreme edge-to-vertex
geodetic set of G. It is clear that neither S; nor S, is an extreme edge-to-vertex
geodetic set of G and so gey > |. However, S is an extreme edge-to-vertex geodetic set

of G so that that ge, = I. Therefore G is a perfect extreme edge-to-vertex geodesic
graph. |
Var
Vit Ug- r-1 Ug-r
C2r _.
W, L Wis
G
W,
Figure 2.5
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